The Bearable Lightness of Solar Modules Part II

Ana C. Martins¹

¹ Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, 2000 Neuchâtel, Switzerland

 29^{th} March 2017

Ideas Lecture, 29th March 2017

Lightweight PV approach

FÉDÉRALE DE LAUSANN

Our vision for rigid lightweight PV

There are thousands types of PV module on the market... ... so which kind of application do we target?

- Façade elements
- Refurbish buildings

Advantages of our solutions

- Reduced fixation systems
- Reduce cost of installation
- Easy to install and remove
- Unbreakable
- Reliable
- Independent on the building structure

How can we reach lightness?

In conventional module, 60-70% of the weight is given by the glass layer(s)

During PV module design there are a limiting set of glass-substitute materials available with ideal properties, such as:

- lightness
- long lifetime (min. 25years) reliability
- stable under outdoor conditions (no yellowing, no breaking...)
- rigidity
- compatible with building codes
- Full structure has to be easy to manufacture

Challenges in lightweight PV design

Market research

Example of commercial c-Si PV modules tested

Reliability of PV modules is assessed by means of sets of laboratory tests developed to induce accelerated ageing: **Accelerated Lifetime Testing** (ALTs)

Qualification of c-Si PV modules: IEC 61215

Failure modes observed in Thermal cycling (1)

Thermal cycling: ability to withstand thermal stresses

-40 / 85°C

Failure modes observed in **Thermal cycling** (2)

PV-lab

IMT NEUCHATEL

Failure modes observed in Hail Test

Hail Test: verify resistance to impact

- 23 m/s
- 11 positions
- Ø 2.5 cm

- Cells cracks due to weak protective frontsheet
- Huge decrease in power output

Failure modes observed in **Damp Heat**

Damp-heat: ability of the module to resist longterm exposure to humidity at elevated temperature

- 85°C and 85% RH
- 1000 h

- Cells cracks propagation
- Decrease in power output
- Delamination of the frontsheet
- Interconnection corrosion

Review of existing rigid commercial products (1)

- Few certified lightweight solutions are available
- One example: 7.7 kg/m² made of:
 - fluoropolymer frontsheet
 - glass/carbon reinforced polymer at the back

Review of existing rigid commercial products (2)

- No visual defects
- Power output in accordance with manufacture datasheet
- Module was in good conditions
- Strong frontsheet deformation
- Cracks propagation
- Interconnection failure
- Delamination of BS

11

Test Sequence [-]

IMI NEUCHAIEL

Lightweight approach

IMT NEUCHATEL

Lightweight PV module

Requirements

- Lightweight (5kg/m²)
- Materials should have similar CTEs
- Simple process
- > Rigidity
- Resistance (Unbreakable)
- Reliable under different ALT's (For the moment: TC / DH / HT)
- Aesthetics

Rigid lightweight solution reliability

PV-lab

Reference

- Time consuming process (2-steps)
- Dangerous solar cells handling (easy to crack)

Rigid lightweight solution reliability

ÉCOLE POLYTECHNIQU Fédérale de Lausanni

Rigid lightweight solution upscaling

Medium-area module

- 16 cells module
- Simple manufacture process
- Good appearance: no bubbles / cracks / bending

- Some finger interruption, micro cracks did not get worst
- No Vis changes

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Size upscaling

constraints during PV design

16-cell mediumarea module

Need of ideal fixation system to be able to optimize PV design !

Mechanical loading test: ability to withstand

wind, snow, ice loads

- 2400Pa (or higher)
- 1hour: pressure & suction
- In combination with mounting structure

Hail Test: verify resistance to impact of hailstones

- 23 m/s
- 11 positions
- \emptyset 2.5 cm (or larger)
- In combination with mounting structure

Typical sandwich panels

Mechanical fixing to panel faces is achieved in a variety of ways. The choice of method depends on:

- the desired strength
- the finish required
- the quantity to be produced.

Single part ferrule

Threaded insert

Distance tube

18

Through panel distance tube using penny washer

Point fixing systems

- Typical fixation system for transparent building facades
- Compatible with composite perforation

PV-lab

IMT NEUCHATEL

Gluing panels

SikaTack Panel

- 1. Adhesive: one-part moisture curing and structural adhesive
- 2. Tape: closed-cell PE foam core with pressure-sensitive adhesive for panel fixation
- 3. Primer: pigmented, solvent-based adhesion promoter
- 4. Panel

Mechanically fixed panels

Downer - external wall cladding

- 1. Aluminum rail
- 2. Fixing structures on the panel

What about an even simpler fixation system?

Conclusions

Challenges of lightweight PV design

- Thermal mismatch
- Yellowing
- Delamination / low adhesion between materials
- Low resistance to humidity
- Rigid enough to resist mechanical stresses
- Our rigid lightweight solutions
 - Easy to process
 - Reliable under TC / DH / HT
 - Stable
 - Rigid
- Lightweight structures can easily be adapted to many types of fixation
 - Does an "ideal" fixation system exist for façade of refurbished buildings?

Acknowledgements:

Swiss National Science Foundation (SNSF) for funding. The research on lightweight elements presented here is part of the National Research Program "Energy Turnaround" (NRP 70).

V. Chapuis, X. Niquille, A. Virtuani, C. Ballif and all co-workers at PV-Lab

Thank you for your attention

Ideas Lecture, 29th March 2017