"New approaches for BIPV elements: from thin film terra-cotta to crystalline white modules"

Laure-Emmanuelle Perret-Aebi

Photovoltaic Research

A competence center

- Basic research
- Advanced devices

EPFL- PVLAB

- Applied research
- From lab to industry

CSEM PV-center

An incredible potential

In Switzerland, 30% of our electricity needs would be covered by using PV modules (10% efficiency) on well oriented roof (130km²)

An incredible potential

In Switzerland, 30% of our electricity needs would be covered by using PV modules (10% efficiency) on well

oriented roof (130km²)

Facades are very interesting and necessary!

not anymore an option

- Positive energy buildings
- ➤ MoPEC 2014

Photovoltaic in buildings Integration & Aesthetic

More than a challenge, a necessity!

some numbers

Wood: 150 CHF/m²

Ceramic: 250 CHF/m²

Metal: 300 CHF/m²

Glass: 600 CHF/m²

Marmor: 1000 CHF/m²

Micromorph PV module: 90 CHF/m²

A multidisciplinary challenge

Attractive dedicated modules designed with architects, builders, installers...

```
colored modules,

optical effect,

size, shape, dummies
```

Multi-functional building elements building skin, insulation, ventilated façade, windows.

A multidisciplinary challenge

But also...

- Identification of the operational barriers
- Holistic strategies from industry to implementation
- Legislations and regulators, architects, suppliers, integrators, builders...
- Cultural, societal, emotional barriers

NRP 70 " Active Interface"

Nice and at low cost

Transforming and modifying a standard PV module without touching the core technology is a efficient way to modify overall aesthetics without increasing the module costs.

PV instead of tiles

from lab to fab

2010 2013 TODAY

Development & Integration

Transfer & Industrialization

Archinsolar project

www.userhuus.ch

Terra-cotta PV

An example of technological transfer

Thin-film terra-cotta

Mat or shiny finish

Sizes: full size (1100 x 1400) and small size available

IEC certification and Swiss PV label in process

Photovoltaic in buildings A test installation in Fribourg

Photovoltaic in buildings terra-cotta roofs - simulation

And what about white?

White photovoltaic module for building facade

Cool & fresh

Elegant

Fits to any architectural style

:: csem

White photovoltaic module for building facade

>10% efficiency

White photovoltaic modules How does it work

White photovoltaic modules How does it work

How does it work

IR response for different silicon solar cells technologies

- HJT solar cells have a particularly high response in the IR part of the spectra
- 55% of its current comes from IR (700-1200nm).

How does it work

- HJT solar cells reach a V_0 close to 730 mV (standard c-Si cell 630 mV)
- Even without the visible part of the spectra, the overall conversion efficiency can be over 10%!

How does it work

Very stable color at every angle of vision (use of broad-band filters)

How does it work

Sample	V _{oc} (V)	FF (%)	J _{sc} (mA/cm²)	Eff. (%)
Reference	0.727	71.8	36.56	19.1
White	0.714	74.7	21.38	11.4
D (%)	-1.8	4.0	-41.5	-40.2

Cell area (cm²)	243.4
Module area (cm²)	400

- Homogeneous white appearance
- Module efficiency above 11%

from lab to fab

SOLAXESS white solar technology

www.solaxess.ch

Colored photovoltaic modules

Next step

white color

White photovoltaic modules A new building material

From inactive to active building façade!!

Thank you for you attention

Swiss PV flag at 10% efficiency

