ACTIVE INTERFACES. From 3D geodata to BIPV yield estimation: towards an urban-scale simulation workflow Giuseppe Peronato^{1*}, Emmanuel Rey², Marilyne Andersen¹

Overview

In order to meet the requirements of the Energy Strategy 2050, there is the need for a largescale energy retrofit of the current building stock combined with the use of solar active systems, in particular BIPV. However, existing tools to assess the potential solar energy yield, such as solar cadasters, present some limits. For instance, they usually consider only rooftops and do not include inter-reflections, neglecting or underestimating the potential for façade-applied systems. To overcome some of these limits, we present here a simulationbased workflow for the assessment of the BIPV potential in urban areas. Advanced solar radiation and PV-modeling tools are applied to detailed 3D city models, derived from 3D geodata that are (or will be soon) available for all of Switzerland.

In the workflow, all building surfaces are first regularly subdivided according to a given PV module size. For each sub-surface, the POA irradiance is then calculated using weather data from Meteonorm and the software CitySim. We finally apply the Sandia cell temperature model and the De Soto "Five Parameter" model to calculate the DC power of the system.

//// 3D geodata

Proposed workflow

Simulated BIPV module

Dimensions	1300 x 875 x 6.5 mm
Specifications at STC	Value
Nominal efficiency	17.7%
Nominal output	185 Wp
Voltage U _{mpp}	21.8 V
Voltage I _{mpp}	8.5 A
Open circuit voltage U _{oc}	26.3 V
Short circuit current I _{sc}	9.0 A

Parameter for the De Soto model		Unit	Value
Modified diode ideality factor parameter at reference conditions	a_ref	Α	1.2
Light-generated at reference conditions	I_L_ref	А	9
Diode reverse saturation current in amperes at reference conditions	I_o_ref	А	1.02 · 10 ⁻¹⁰
Series resistance at reference conditions	R_s	Ω	0.18
Shunt resistance at reference conditions	R_sh_ref	Ω	2200

Conclusion / Outlook

The proposed method allows an early assessment of the BIPV potential of all building surfaces, taking into account shading and reflections from the urban context. The BIPV model considers the effective DC power due to cell temperature and irradiance effect. In the simulated case, we can see, for instance, that the efficiency is generally greater than at STC.

We showed a test application of the proposed workflow for some sample buildings in the city of Neuchâtel considering one single scenario, which includes, for instance, a typical meteorological year (TMY) and the absence of vegetation (e.g. as in winter, assuming deciduous vegetation). However, the workflow can be extended to include multiple simulation scenarios, which can provide confidence intervals so as to allow decision-makers account for the uncertainty of the simulated results.

Since the workflow is entirely automatized and based on standard geodata, we argue it can be applied up to the city-scale, allowing an estimation of the BIPV potential for urban planning applications. Future work include the application of the method for the whole city of Neuchâtel with multiple scenarios.

¹Interdisciplinary Laboratory of Performance-Integrated Design (LIPID) ²Laboratory of Architecture and Sustainable Technologies (LAST)

Ecole polytechnique fédérale de Lausanne (EPFL) *corresponding author: giuseppe.peronato@epfl.ch

SWISS NATIONAL SCIENCE FOUNDATION

FNSNF

Acknowledgements: This research project is part of the National Research Programme "Energy Turnaround" (NRP 70) of the Swiss National Science Foundation (SNSF). Further information on the National Research Programme can be found at <u>www.nrp70.ch</u>. The authors acknowledge additional support from the Ecole polytechnique fédérale de Lausanne (EPFL). The geodata have been kindly provided by the Système d'Information du Territoire Neuchâtelois (© 2015 Service de la Géomatique et du Registre Foncier) and by the Swiss Federal Office of Topography (©2016 Swisstopo). The authors would like to thank Dr. Francesco Frontini for providing the data of the PV module.

15th National Photovoltaic Congress 2017 | SwissTech Convention Center, Lausanne, March 23-24, 2017