21 May 2019
Scientific publication in “Energy & Buildings”
In a recent paper published by the prestigious scientific journal “Energy & Buildings”, Sergi Aguacil Moreno, Sophie Lufkin and Emmanuel Rey from the Laboratory of Architecture and Sustainable Technologies (LAST) of the Ecole polytechnique fédérale de Lausanne (EPFL) present the latest results of the ACTIVE INTERFACES interdisciplinary research project. Conducted in the framework of the National Research Programme "Energy Turnaround" (NRP 70) of the Swiss National Science Foundation (SNSF), the project aims at accelerating the integration of Building-integrated photovoltaic (BIPV) systems in urban renewal processes.
In light of the Paris Agreement’s objectives and the related European and Swiss goals of decarbonising the built environment, the importance, relevance, and potential benefits of integrating Building-Integrated Photovoltaic (BIPV) within building renovation processes are acknowledged. Functioning both as envelope material and on-site electricity generator, BIPV can simultaneously reduce the use of fossil fuels and greenhouse gas emissions.
Motivated by the current barriers and misconceptions that withhold a widespread integration of BIPV, particularly regarding financial implications and solar exposure levels that are believed to be unfavourable, the « Energy & Buildings » paper aims at bringing new knowledge and a rigorous and adaptable method to inform decision-making and promote the use of BIPV in urban renewal processes.
Focusing on the architectural design, we here present a methodology to select active (BIPV) surfaces during the retrofitting process based on a trade-off between the self-consumption (SC) and self-sufficiency (SS) of a building. The approach consists in iteratively identifying surfaces that achieve a varying annual irradiation value (threshold). It also includes the evaluation of the effect of electricity storage systems. The methodology and the results of its application are presented through the comparison of two case studies in Neuchâtel (Switzerland).
The outcomes of this new approach for addressing building renovation projects in the urban context can help architects, designers and engineers to better size the installation and the repartition of active surfaces in the renovated thermal envelope. The findings demonstrate the need for context-specific methods towards a proper evaluation and better valorisation of BIPV potential.
Sergi Aguacil Moreno, Sophie Lufkin and Emmanuel Rey, "Active surfaces selection method for building-integrated photovoltaics (BIPV) in renovation projects based on self-consumption and self-sufficiency". Energy & Buildings, Volume 193, 15 June 2019, Pages 15-28.